Doping of molecular semiconductors through proton-coupled electron transfer

[ad_1]

  • Jacobs, I. E. & Moulé, A. J. Controlling molecular doping in organic semiconductors. Adv. Mater. 29, 1703063 (2017).

    Article 

    Google Scholar
     

  • Scaccabarozzi, A. D. et al. Doping approaches for organic semiconductors. Chem. Rev. 122, 4420–4492 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Efremov, R. G., Baradaran, R. & Sazanov, L. A. The architecture of respiratory complex I. Nature 465, 441–445 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reece, S. Y. & Nocera, D. G. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673–699 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sze, S. M. Semiconductor Devices: Physics and Technology (John Wiley & Sons, 2008).

  • Wang, T. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377, 1227–1232 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karki, A. et al. Doped semiconducting polymer nanoantennas for tunable organic plasmonics. Commun. Mater. 3, 48 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, W., Ding, J., Zou, Y., Di, C.-A. & Zhu, D. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 49, 7210–7228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Cochran, J. E. et al. Molecular interactions and ordering in electrically doped polymers: blends of PBTTT and F4TCNQ. Macromolecules 47, 6836–6846 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Untilova, V., Biskup, T., Biniek, L., Vijayakumar, V. & Brinkmann, M. Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F4TCNQ films. Macromolecules 53, 2441–2453 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salzmann, I., Heimel, G., Oehzelt, M., Winkler, S. & Koch, N. Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 49, 370–378 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Leeuw, D., Simenon, M., Brown, A. & Einerhand, R. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    Article 

    Google Scholar
     

  • Guo, S. et al. n-doping of organic electronic materials using air-stable organometallics. Adv. Mater. 24, 699–703 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Electron transport and nanomorphology in solution-processed polymeric semiconductor n-doped with an air-stable organometallic dimer. Adv. Electron. Mater. 3, 1600546 (2017).

    Article 

    Google Scholar
     

  • Yamashita, Y. et al. Highly air-stable, n-doped conjugated polymers achieved by dimeric organometallic dopants. J. Mater. Chem. C 9, 4105–4111 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, E. M. et al. Effects of counter-ion size on delocalization of carriers and stability of doped semiconducting polymers. Adv. Electron. Mater. 6, 2000595 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jacobs, I. E. et al. High-efficiency ion-exchange doping of conducting polymers. Adv. Mater. 34, 2102988 (2022).

  • Tang, C. G. et al. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts. Nature 539, 536–540 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yurash, B. et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids. Nat. Mater. 18, 1327–1334 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon, A. L., Vezin, H., Nguyen, T.-Q. & Reddy, G. M. Structural insights into Lewis acid- and F4TCNQ-doped conjugated polymers by solid-state magnetic resonance spectroscopy. Mater. Horiz. 9, 981–990 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, X. et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nat. Mater. 16, 1209–1215 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C.-Y. et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat. Commun. 11, 3292 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huynh, M. T., Anson, C. W., Cavell, A. C., Stahl, S. S. & Hammes-Schiffer, S. Quinone 1e and 2e/2H+ reduction potentials: identification and analysis of deviations from systematic scaling relationships. J. Am. Chem. Soc. 138, 15903–15910 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Y., Li, Y. & Yu, G. Exploring bio-inspired quinone-based organic redox flow batteries: a combined experimental and computational study. Chem 1, 790–801 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Trasatti, S. The absolute electrode potential: an explanatory note (recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Hayes, J. C. & Lietzke, M. The standard electrode potential of the quinhydrone electrode from 25 to 55°. J. Phys. Chem. 64, 374–376 (1960).

    Article 
    CAS 

    Google Scholar
     

  • McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamashita, Y. et al. Supramolecular cocrystals built through redox-triggered ion intercalation in π-conjugated polymers. Commun. Mater. 2, 45 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vijayakumar, V. et al. Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F4TCNQ-doped PBTTT films. ACS Appl. Mater. Interfaces 11, 4942–4953 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bischak, C. G., Flagg, L. Q. & Ginger, D. S. Ion exchange gels allow organic electrochemical transistor operation with hydrophobic polymers in aqueous solution. Adv. Mater. 32, 2002610 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koh, Q.-M. et al. Overcoming the water oxidative limit for ultra-high-workfunction hole-doped polymers. Nat. Commun. 12, 3345 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann, A. I., Kroon, R., Yu, L. & Müller, C. Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimide. J. Mater. Chem. C 6, 6905–6910 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cendra, C. et al. Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1807034 (2019).

    Article 

    Google Scholar
     

  • Flagg, L. Q., Giridharagopal, R., Guo, J. & Ginger, D. S. Anion-dependent doping and charge transport in organic electrochemical transistors. Chem. Mater. 30, 5380–5389 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cho, E. et al. Three-dimensional packing structure and electronic properties of biaxially oriented poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene) films. J. Am. Chem. Soc. 134, 6177–6190 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guardado, J. O. & Salleo, A. Structural effects of gating poly(3-hexylthiophene) through an ionic liquid. Adv. Funct. Mater. 27, 1701791 (2017).

    Article 

    Google Scholar
     

  • Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boettcher, S. W. et al. Potentially confusing: potentials in electrochemistry. ACS Energy Lett. 6, 261–266 (2020).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    2023. All Rights Reserved.